Root Operators and “Evolution” Equations

نویسندگان

  • Giuseppe Dattoli
  • Hari M. Srivastava
چکیده

Root-operator factorization à la Dirac provides an effective tool to deal with equations, which are not of evolution type, or are ruled by fractional differential operators, thus eventually yielding evolution-like equations although for a multicomponent vector. We will review the method along with its extension to root operators of degree higher than two. Also, we will show the results obtained by the Dirac-method as well as results from other methods, specifically in connection with evolution-like equations ruled by square-root operators, that we will address to as relativistic evolution equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups of Operators for Evolution Equations of Quantum Many-Particle Systems

The aim of this work is to study the properties of groups of operators for evolution equations of quantum many-particle systems, namely, the von Neumann hierarchy for correlation operators, the BBGKY hierarchy for marginal density operators and the dual BBGKY hierarchy for marginal observables. We show that the concept of cumulants (semi-invariants) of groups of operators for the von Neumann eq...

متن کامل

Migrativity equations and Mayor's aggregation operators

There has been a growing interest in the study of the notion of $alpha$-migrativity and generalizations in recent years, and it has been investigated for families of certain operators such as t-norms, t-conorms, uninorms, nullnorms.This paper is mainly devoted to investigating the migrativity equations between semi-t-operators or semi-uninorms, and Mayor's aggregation operators. The results tha...

متن کامل

Solving infinite system of nonlinear integral equations by using ‎F-‎generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.

In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...

متن کامل

A Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type

In this paper, we generalize the Meir-Keeler condensing  operators  via a concept of the class of operators  $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems.  As an application of this extension, we  analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally,  we p...

متن کامل

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015